Batching Completion()
LiteLLM allows you to:
- Send many completion calls to 1 model
- Send 1 completion call to many models: Return Fastest Response
- Send 1 completion call to many models: Return All Responses
Trying to do batch completion on LiteLLM Proxy ? Go here: https://docs.litellm.ai/docs/proxy/user_keys#beta-batch-completions---pass-model-as-list
Send multiple completion calls to 1 model​
In the batch_completion method, you provide a list of messages where each sub-list of messages is passed to litellm.completion(), allowing you to process multiple prompts efficiently in a single API call.
Example Code​
import litellm
import os
from litellm import batch_completion
os.environ['ANTHROPIC_API_KEY'] = ""
responses = batch_completion(
    model="claude-2",
    messages = [
        [
            {
                "role": "user",
                "content": "good morning? "
            }
        ],
        [
            {
                "role": "user",
                "content": "what's the time? "
            }
        ]
    ]
)
Send 1 completion call to many models: Return Fastest Response​
This makes parallel calls to the specified models and returns the first response 
Use this to reduce latency
- SDK
- PROXY
Example Code​
import litellm
import os
from litellm import batch_completion_models
os.environ['ANTHROPIC_API_KEY'] = ""
os.environ['OPENAI_API_KEY'] = ""
os.environ['COHERE_API_KEY'] = ""
response = batch_completion_models(
    models=["gpt-3.5-turbo", "claude-instant-1.2", "command-nightly"], 
    messages=[{"role": "user", "content": "Hey, how's it going"}]
)
print(result)
Just pass a comma-separated string of model names and the flag fastest_response=True.
- curl
- OpenAI SDK
curl -X POST 'http://localhost:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \ 
-D '{
    "model": "gpt-4o, groq-llama", # 👈 Comma-separated models
    "messages": [
      {
        "role": "user",
        "content": "What's the weather like in Boston today?"
      }
    ],
    "stream": true,
    "fastest_response": true # 👈 FLAG
}
'
import openai
client = openai.OpenAI(
    api_key="anything",
    base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(
    model="gpt-4o, groq-llama", # 👈 Comma-separated models
    messages = [
        {
            "role": "user",
            "content": "this is a test request, write a short poem"
        }
    ],
    extra_body={"fastest_response": true} # 👈 FLAG
)
print(response)
Example Setup:​
model_list: 
- model_name: groq-llama
  litellm_params:
    model: groq/llama3-8b-8192
    api_key: os.environ/GROQ_API_KEY
- model_name: gpt-4o
  litellm_params:
    model: gpt-4o
    api_key: os.environ/OPENAI_API_KEY
litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:4000
Output​
Returns the first response in OpenAI format. Cancels other LLM API calls.
{
  "object": "chat.completion",
  "choices": [
    {
      "finish_reason": "stop",
      "index": 0,
      "message": {
        "content": " I'm doing well, thanks for asking! I'm an AI assistant created by Anthropic to be helpful, harmless, and honest.",
        "role": "assistant",
        "logprobs": null
      }
    }
  ],
  "id": "chatcmpl-23273eed-e351-41be-a492-bafcf5cf3274",
  "created": 1695154628.2076092,
  "model": "command-nightly",
  "usage": {
    "prompt_tokens": 6,
    "completion_tokens": 14,
    "total_tokens": 20
  }
}
Send 1 completion call to many models: Return All Responses​
This makes parallel calls to the specified models and returns all responses
Use this to process requests concurrently and get responses from multiple models.
Example Code​
import litellm
import os
from litellm import batch_completion_models_all_responses
os.environ['ANTHROPIC_API_KEY'] = ""
os.environ['OPENAI_API_KEY'] = ""
os.environ['COHERE_API_KEY'] = ""
responses = batch_completion_models_all_responses(
    models=["gpt-3.5-turbo", "claude-instant-1.2", "command-nightly"], 
    messages=[{"role": "user", "content": "Hey, how's it going"}]
)
print(responses)
Output​
[<ModelResponse chat.completion id=chatcmpl-e673ec8e-4e8f-4c9e-bf26-bf9fa7ee52b9 at 0x103a62160> JSON: {
  "object": "chat.completion",
  "choices": [
    {
      "finish_reason": "stop_sequence",
      "index": 0,
      "message": {
        "content": " It's going well, thank you for asking! How about you?",
        "role": "assistant",
        "logprobs": null
      }
    }
  ],
  "id": "chatcmpl-e673ec8e-4e8f-4c9e-bf26-bf9fa7ee52b9",
  "created": 1695222060.917964,
  "model": "claude-instant-1.2",
  "usage": {
    "prompt_tokens": 14,
    "completion_tokens": 9,
    "total_tokens": 23
  }
}, <ModelResponse chat.completion id=chatcmpl-ab6c5bd3-b5d9-4711-9697-e28d9fb8a53c at 0x103a62b60> JSON: {
  "object": "chat.completion",
  "choices": [
    {
      "finish_reason": "stop",
      "index": 0,
      "message": {
        "content": " It's going well, thank you for asking! How about you?",
        "role": "assistant",
        "logprobs": null
      }
    }
  ],
  "id": "chatcmpl-ab6c5bd3-b5d9-4711-9697-e28d9fb8a53c",
  "created": 1695222061.0445492,
  "model": "command-nightly",
  "usage": {
    "prompt_tokens": 6,
    "completion_tokens": 14,
    "total_tokens": 20
  }
}, <OpenAIObject chat.completion id=chatcmpl-80szFnKHzCxObW0RqCMw1hWW1Icrq at 0x102dd6430> JSON: {
  "id": "chatcmpl-80szFnKHzCxObW0RqCMw1hWW1Icrq",
  "object": "chat.completion",
  "created": 1695222061,
  "model": "gpt-3.5-turbo-0613",
  "choices": [
    {
      "index": 0,
      "message": {
        "role": "assistant",
        "content": "Hello! I'm an AI language model, so I don't have feelings, but I'm here to assist you with any questions or tasks you might have. How can I help you today?"
      },
      "finish_reason": "stop"
    }
  ],
  "usage": {
    "prompt_tokens": 13,
    "completion_tokens": 39,
    "total_tokens": 52
  }
}]