Cerebras
https://inference-docs.cerebras.ai/api-reference/chat-completions
tip
We support ALL Cerebras models, just set model=cerebras/<any-model-on-cerebras> as a prefix when sending litellm requests
API Key​
# env variable
os.environ['CEREBRAS_API_KEY']
Sample Usage​
from litellm import completion
import os
os.environ['CEREBRAS_API_KEY'] = ""
response = completion(
    model="cerebras/llama3-70b-instruct",
    messages=[
        {
            "role": "user",
            "content": "What's the weather like in Boston today in Fahrenheit? (Write in JSON)",
        }
    ],
    max_tokens=10,
        
    # The prompt should include JSON if 'json_object' is selected; otherwise, you will get error code 400.
    response_format={ "type": "json_object" },
    seed=123,
    stop=["\n\n"],
    temperature=0.2,
    top_p=0.9,
    tool_choice="auto",
    tools=[],
    user="user",
)
print(response)
Sample Usage - Streaming​
from litellm import completion
import os
os.environ['CEREBRAS_API_KEY'] = ""
response = completion(
    model="cerebras/llama3-70b-instruct",
    messages=[
        {
            "role": "user",
            "content": "What's the weather like in Boston today in Fahrenheit? (Write in JSON)",
        }
    ],
    stream=True,
    max_tokens=10,
    # The prompt should include JSON if 'json_object' is selected; otherwise, you will get error code 400.
    response_format={ "type": "json_object" }, 
    seed=123,
    stop=["\n\n"],
    temperature=0.2,
    top_p=0.9,
    tool_choice="auto",
    tools=[],
    user="user",
)
for chunk in response:
    print(chunk)
Usage with LiteLLM Proxy Server​
Here's how to call a Cerebras model with the LiteLLM Proxy Server
- Modify the config.yaml - model_list:
 - model_name: my-model
 litellm_params:
 model: cerebras/<your-model-name> # add cerebras/ prefix to route as Cerebras provider
 api_key: api-key # api key to send your model
- Start the proxy - $ litellm --config /path/to/config.yaml
- Send Request to LiteLLM Proxy Server - OpenAI Python v1.0.0+
- curl
 - import openai
 client = openai.OpenAI(
 api_key="sk-1234", # pass litellm proxy key, if you're using virtual keys
 base_url="http://0.0.0.0:4000" # litellm-proxy-base url
 )
 response = client.chat.completions.create(
 model="my-model",
 messages = [
 {
 "role": "user",
 "content": "what llm are you"
 }
 ],
 )
 print(response)- curl --location 'http://0.0.0.0:4000/chat/completions' \
 --header 'Authorization: Bearer sk-1234' \
 --header 'Content-Type: application/json' \
 --data '{
 "model": "my-model",
 "messages": [
 {
 "role": "user",
 "content": "what llm are you"
 }
 ],
 }'