Gemini - Google AI Studio
| Property | Details | 
|---|---|
| Description | Google AI Studio is a fully-managed AI development platform for building and using generative AI. | 
| Provider Route on LiteLLM | gemini/ | 
| Provider Doc | Google AI Studio ↗ | 
| API Endpoint for Provider | https://generativelanguage.googleapis.com | 
| Supported OpenAI Endpoints | /chat/completions,/embeddings,/completions | 
| Pass-through Endpoint | Supported | 
API Keys​
import os
os.environ["GEMINI_API_KEY"] = "your-api-key"
Sample Usage​
from litellm import completion
import os
os.environ['GEMINI_API_KEY'] = ""
response = completion(
    model="gemini/gemini-pro", 
    messages=[{"role": "user", "content": "write code for saying hi from LiteLLM"}]
)
Supported OpenAI Params​
- temperature
- top_p
- max_tokens
- max_completion_tokens
- stream
- tools
- tool_choice
- functions
- response_format
- n
- stop
- logprobs
- frequency_penalty
- modalities
- reasoning_content
Anthropic Params
- thinking (used to set max budget tokens across anthropic/gemini models)
Usage - Thinking / reasoning_content​
LiteLLM translates OpenAI's reasoning_effort to Gemini's thinking parameter. Code
Mapping
| reasoning_effort | thinking | 
|---|---|
| "low" | "budget_tokens": 1024 | 
| "medium" | "budget_tokens": 2048 | 
| "high" | "budget_tokens": 4096 | 
- SDK
- PROXY
from litellm import completion
resp = completion(
    model="gemini/gemini-2.5-flash-preview-04-17",
    messages=[{"role": "user", "content": "What is the capital of France?"}],
    reasoning_effort="low",
)
- Setup config.yaml
- model_name: gemini-2.5-flash
  litellm_params:
    model: gemini/gemini-2.5-flash-preview-04-17
    api_key: os.environ/GEMINI_API_KEY
- Start proxy
litellm --config /path/to/config.yaml
- Test it!
curl http://0.0.0.0:4000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer <YOUR-LITELLM-KEY>" \
  -d '{
    "model": "gemini-2.5-flash",
    "messages": [{"role": "user", "content": "What is the capital of France?"}],
    "reasoning_effort": "low"
  }'
Expected Response
ModelResponse(
    id='chatcmpl-c542d76d-f675-4e87-8e5f-05855f5d0f5e',
    created=1740470510,
    model='claude-3-7-sonnet-20250219',
    object='chat.completion',
    system_fingerprint=None,
    choices=[
        Choices(
            finish_reason='stop',
            index=0,
            message=Message(
                content="The capital of France is Paris.",
                role='assistant',
                tool_calls=None,
                function_call=None,
                reasoning_content='The capital of France is Paris. This is a very straightforward factual question.'
            ),
        )
    ],
    usage=Usage(
        completion_tokens=68,
        prompt_tokens=42,
        total_tokens=110,
        completion_tokens_details=None,
        prompt_tokens_details=PromptTokensDetailsWrapper(
            audio_tokens=None,
            cached_tokens=0,
            text_tokens=None,
            image_tokens=None
        ),
        cache_creation_input_tokens=0,
        cache_read_input_tokens=0
    )
)
Pass thinking to Gemini models​
You can also pass the thinking parameter to Gemini models.
This is translated to Gemini's thinkingConfig parameter.
- SDK
- PROXY
response = litellm.completion(
  model="gemini/gemini-2.5-flash-preview-04-17",
  messages=[{"role": "user", "content": "What is the capital of France?"}],
  thinking={"type": "enabled", "budget_tokens": 1024},
)
curl http://0.0.0.0:4000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer $LITELLM_KEY" \
  -d '{
    "model": "gemini/gemini-2.5-flash-preview-04-17",
    "messages": [{"role": "user", "content": "What is the capital of France?"}],
    "thinking": {"type": "enabled", "budget_tokens": 1024}
  }'
Passing Gemini Specific Params​
Response schema​
LiteLLM supports sending response_schema as a param for Gemini-1.5-Pro on Google AI Studio. 
Response Schema
- SDK
- PROXY
from litellm import completion 
import json 
import os 
os.environ['GEMINI_API_KEY'] = ""
messages = [
    {
        "role": "user",
        "content": "List 5 popular cookie recipes."
    }
]
response_schema = {
        "type": "array",
        "items": {
            "type": "object",
            "properties": {
                "recipe_name": {
                    "type": "string",
                },
            },
            "required": ["recipe_name"],
        },
    }
completion(
    model="gemini/gemini-1.5-pro", 
    messages=messages, 
    response_format={"type": "json_object", "response_schema": response_schema} # 👈 KEY CHANGE
    )
print(json.loads(completion.choices[0].message.content))
- Add model to config.yaml
model_list:
  - model_name: gemini-pro
    litellm_params:
      model: gemini/gemini-1.5-pro
      api_key: os.environ/GEMINI_API_KEY
- Start Proxy
$ litellm --config /path/to/config.yaml
- Make Request!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
  "model": "gemini-pro",
  "messages": [
        {"role": "user", "content": "List 5 popular cookie recipes."}
    ],
  "response_format": {"type": "json_object", "response_schema": { 
        "type": "array",
        "items": {
            "type": "object",
            "properties": {
                "recipe_name": {
                    "type": "string",
                },
            },
            "required": ["recipe_name"],
        },
    }}
}
'
Validate Schema
To validate the response_schema, set enforce_validation: true.
- SDK
- PROXY
from litellm import completion, JSONSchemaValidationError
try: 
    completion(
    model="gemini/gemini-1.5-pro", 
    messages=messages, 
    response_format={
        "type": "json_object", 
        "response_schema": response_schema,
        "enforce_validation": true # 👈 KEY CHANGE
    }
    )
except JSONSchemaValidationError as e: 
    print("Raw Response: {}".format(e.raw_response))
    raise e
- Add model to config.yaml
model_list:
  - model_name: gemini-pro
    litellm_params:
      model: gemini/gemini-1.5-pro
      api_key: os.environ/GEMINI_API_KEY
- Start Proxy
$ litellm --config /path/to/config.yaml
- Make Request!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
  "model": "gemini-pro",
  "messages": [
        {"role": "user", "content": "List 5 popular cookie recipes."}
    ],
  "response_format": {"type": "json_object", "response_schema": { 
        "type": "array",
        "items": {
            "type": "object",
            "properties": {
                "recipe_name": {
                    "type": "string",
                },
            },
            "required": ["recipe_name"],
        },
    }, 
    "enforce_validation": true
    }
}
'
LiteLLM will validate the response against the schema, and raise a JSONSchemaValidationError if the response does not match the schema. 
JSONSchemaValidationError inherits from openai.APIError 
Access the raw response with e.raw_response
GenerationConfig Params​
To pass additional GenerationConfig params - e.g. topK, just pass it in the request body of the call, and LiteLLM will pass it straight through as a key-value pair in the request body. 
See Gemini GenerationConfigParams
- SDK
- PROXY
from litellm import completion 
import json 
import os 
os.environ['GEMINI_API_KEY'] = ""
messages = [
    {
        "role": "user",
        "content": "List 5 popular cookie recipes."
    }
]
completion(
    model="gemini/gemini-1.5-pro", 
    messages=messages, 
    topK=1 # 👈 KEY CHANGE
)
print(json.loads(completion.choices[0].message.content))
- Add model to config.yaml
model_list:
  - model_name: gemini-pro
    litellm_params:
      model: gemini/gemini-1.5-pro
      api_key: os.environ/GEMINI_API_KEY
- Start Proxy
$ litellm --config /path/to/config.yaml
- Make Request!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
  "model": "gemini-pro",
  "messages": [
        {"role": "user", "content": "List 5 popular cookie recipes."}
    ],
  "topK": 1 # 👈 KEY CHANGE
}
'
Validate Schema
To validate the response_schema, set enforce_validation: true.
- SDK
- PROXY
from litellm import completion, JSONSchemaValidationError
try: 
    completion(
    model="gemini/gemini-1.5-pro", 
    messages=messages, 
    response_format={
        "type": "json_object", 
        "response_schema": response_schema,
        "enforce_validation": true # 👈 KEY CHANGE
    }
    )
except JSONSchemaValidationError as e: 
    print("Raw Response: {}".format(e.raw_response))
    raise e
- Add model to config.yaml
model_list:
  - model_name: gemini-pro
    litellm_params:
      model: gemini/gemini-1.5-pro
      api_key: os.environ/GEMINI_API_KEY
- Start Proxy
$ litellm --config /path/to/config.yaml
- Make Request!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
  "model": "gemini-pro",
  "messages": [
        {"role": "user", "content": "List 5 popular cookie recipes."}
    ],
  "response_format": {"type": "json_object", "response_schema": { 
        "type": "array",
        "items": {
            "type": "object",
            "properties": {
                "recipe_name": {
                    "type": "string",
                },
            },
            "required": ["recipe_name"],
        },
    }, 
    "enforce_validation": true
    }
}
'
Specifying Safety Settings​
In certain use-cases you may need to make calls to the models and pass safety settings different from the defaults. To do so, simple pass the safety_settings argument to completion or acompletion. For example:
response = completion(
    model="gemini/gemini-pro", 
    messages=[{"role": "user", "content": "write code for saying hi from LiteLLM"}],
    safety_settings=[
        {
            "category": "HARM_CATEGORY_HARASSMENT",
            "threshold": "BLOCK_NONE",
        },
        {
            "category": "HARM_CATEGORY_HATE_SPEECH",
            "threshold": "BLOCK_NONE",
        },
        {
            "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
            "threshold": "BLOCK_NONE",
        },
        {
            "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
            "threshold": "BLOCK_NONE",
        },
    ]
)
Tool Calling​
from litellm import completion
import os
# set env
os.environ["GEMINI_API_KEY"] = ".."
tools = [
    {
        "type": "function",
        "function": {
            "name": "get_current_weather",
            "description": "Get the current weather in a given location",
            "parameters": {
                "type": "object",
                "properties": {
                    "location": {
                        "type": "string",
                        "description": "The city and state, e.g. San Francisco, CA",
                    },
                    "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
                },
                "required": ["location"],
            },
        },
    }
]
messages = [{"role": "user", "content": "What's the weather like in Boston today?"}]
response = completion(
    model="gemini/gemini-1.5-flash",
    messages=messages,
    tools=tools,
)
# Add any assertions, here to check response args
print(response)
assert isinstance(response.choices[0].message.tool_calls[0].function.name, str)
assert isinstance(
    response.choices[0].message.tool_calls[0].function.arguments, str
)
Google Search Tool​
- SDK
- PROXY
from litellm import completion
import os
os.environ["GEMINI_API_KEY"] = ".."
tools = [{"googleSearch": {}}] # 👈 ADD GOOGLE SEARCH
response = completion(
    model="gemini/gemini-2.0-flash",
    messages=[{"role": "user", "content": "What is the weather in San Francisco?"}],
    tools=tools,
)
print(response)
- Setup config.yaml
model_list:
  - model_name: gemini-2.0-flash
    litellm_params:
      model: gemini/gemini-2.0-flash
      api_key: os.environ/GEMINI_API_KEY
- Start Proxy
$ litellm --config /path/to/config.yaml
- Make Request!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
  "model": "gemini-2.0-flash",
  "messages": [{"role": "user", "content": "What is the weather in San Francisco?"}],
  "tools": [{"googleSearch": {}}]
}
'
Google Search Retrieval​
- SDK
- PROXY
from litellm import completion
import os
os.environ["GEMINI_API_KEY"] = ".."
tools = [{"googleSearch": {}}] # 👈 ADD GOOGLE SEARCH
response = completion(
    model="gemini/gemini-2.0-flash",
    messages=[{"role": "user", "content": "What is the weather in San Francisco?"}],
    tools=tools,
)
print(response)
- Setup config.yaml
model_list:
  - model_name: gemini-2.0-flash
    litellm_params:
      model: gemini/gemini-2.0-flash
      api_key: os.environ/GEMINI_API_KEY
- Start Proxy
$ litellm --config /path/to/config.yaml
- Make Request!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
  "model": "gemini-2.0-flash",
  "messages": [{"role": "user", "content": "What is the weather in San Francisco?"}],
  "tools": [{"googleSearch": {}}]
}
'
Code Execution Tool​
- SDK
- PROXY
from litellm import completion
import os
os.environ["GEMINI_API_KEY"] = ".."
tools = [{"codeExecution": {}}] # 👈 ADD GOOGLE SEARCH
response = completion(
    model="gemini/gemini-2.0-flash",
    messages=[{"role": "user", "content": "What is the weather in San Francisco?"}],
    tools=tools,
)
print(response)
- Setup config.yaml
model_list:
  - model_name: gemini-2.0-flash
    litellm_params:
      model: gemini/gemini-2.0-flash
      api_key: os.environ/GEMINI_API_KEY
- Start Proxy
$ litellm --config /path/to/config.yaml
- Make Request!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
  "model": "gemini-2.0-flash",
  "messages": [{"role": "user", "content": "What is the weather in San Francisco?"}],
  "tools": [{"codeExecution": {}}]
}
'
JSON Mode​
- SDK
- PROXY
from litellm import completion 
import json 
import os 
os.environ['GEMINI_API_KEY'] = ""
messages = [
    {
        "role": "user",
        "content": "List 5 popular cookie recipes."
    }
]
completion(
    model="gemini/gemini-1.5-pro", 
    messages=messages, 
    response_format={"type": "json_object"} # 👈 KEY CHANGE
)
print(json.loads(completion.choices[0].message.content))
- Add model to config.yaml
model_list:
  - model_name: gemini-pro
    litellm_params:
      model: gemini/gemini-1.5-pro
      api_key: os.environ/GEMINI_API_KEY
- Start Proxy
$ litellm --config /path/to/config.yaml
- Make Request!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
  "model": "gemini-pro",
  "messages": [
        {"role": "user", "content": "List 5 popular cookie recipes."}
    ],
  "response_format": {"type": "json_object"}
}
'
Sample Usage​
import os
import litellm
from dotenv import load_dotenv
# Load the environment variables from .env file
load_dotenv()
os.environ["GEMINI_API_KEY"] = os.getenv('GEMINI_API_KEY')
prompt = 'Describe the image in a few sentences.'
# Note: You can pass here the URL or Path of image directly.
image_url = 'https://storage.googleapis.com/github-repo/img/gemini/intro/landmark3.jpg'
# Create the messages payload according to the documentation
messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "text",
                "text": prompt
            },
            {
                "type": "image_url",
                "image_url": {"url": image_url}
            }
        ]
    }
]
# Make the API call to Gemini model
response = litellm.completion(
    model="gemini/gemini-pro-vision",
    messages=messages,
)
# Extract the response content
content = response.get('choices', [{}])[0].get('message', {}).get('content')
# Print the result
print(content)
Usage - PDF / Videos / etc. Files​
Inline Data (e.g. audio stream)​
LiteLLM follows the OpenAI format and accepts sending inline data as an encoded base64 string.
The format to follow is
data:<mime_type>;base64,<encoded_data>
LITELLM CALL
import litellm
from pathlib import Path
import base64
import os
os.environ["GEMINI_API_KEY"] = "" 
litellm.set_verbose = True # 👈 See Raw call 
audio_bytes = Path("speech_vertex.mp3").read_bytes()
encoded_data = base64.b64encode(audio_bytes).decode("utf-8")
print("Audio Bytes = {}".format(audio_bytes))
model = "gemini/gemini-1.5-flash"
response = litellm.completion(
    model=model,
    messages=[
        {
            "role": "user",
            "content": [
                {"type": "text", "text": "Please summarize the audio."},
                {
                    "type": "file",
                    "file": {
                        "file_data": "data:audio/mp3;base64,{}".format(encoded_data), # 👈 SET MIME_TYPE + DATA
                    }
                },
            ],
        }
    ],
)
Equivalent GOOGLE API CALL
# Initialize a Gemini model appropriate for your use case.
model = genai.GenerativeModel('models/gemini-1.5-flash')
# Create the prompt.
prompt = "Please summarize the audio."
# Load the samplesmall.mp3 file into a Python Blob object containing the audio
# file's bytes and then pass the prompt and the audio to Gemini.
response = model.generate_content([
    prompt,
    {
        "mime_type": "audio/mp3",
        "data": pathlib.Path('samplesmall.mp3').read_bytes()
    }
])
# Output Gemini's response to the prompt and the inline audio.
print(response.text)
https:// file​
import litellm
import os
os.environ["GEMINI_API_KEY"] = "" 
litellm.set_verbose = True # 👈 See Raw call 
model = "gemini/gemini-1.5-flash"
response = litellm.completion(
    model=model,
    messages=[
        {
            "role": "user",
            "content": [
                {"type": "text", "text": "Please summarize the file."},
                {
                    "type": "file",
                    "file": {
                        "file_id": "https://storage...", # 👈 SET THE IMG URL
                        "format": "application/pdf" # OPTIONAL
                    }
                },
            ],
        }
    ],
)
gs:// file​
import litellm
import os
os.environ["GEMINI_API_KEY"] = "" 
litellm.set_verbose = True # 👈 See Raw call 
model = "gemini/gemini-1.5-flash"
response = litellm.completion(
    model=model,
    messages=[
        {
            "role": "user",
            "content": [
                {"type": "text", "text": "Please summarize the file."},
                {
                    "type": "file",
                    "file": {
                        "file_id": "gs://storage...", # 👈 SET THE IMG URL
                        "format": "application/pdf" # OPTIONAL
                    }
                },
            ],
        }
    ],
)
Chat Models​
We support ALL Gemini models, just set model=gemini/<any-model-on-gemini> as a prefix when sending litellm requests
| Model Name | Function Call | Required OS Variables | 
|---|---|---|
| gemini-pro | completion(model='gemini/gemini-pro', messages) | os.environ['GEMINI_API_KEY'] | 
| gemini-1.5-pro-latest | completion(model='gemini/gemini-1.5-pro-latest', messages) | os.environ['GEMINI_API_KEY'] | 
| gemini-2.0-flash | completion(model='gemini/gemini-2.0-flash', messages) | os.environ['GEMINI_API_KEY'] | 
| gemini-2.0-flash-exp | completion(model='gemini/gemini-2.0-flash-exp', messages) | os.environ['GEMINI_API_KEY'] | 
| gemini-2.0-flash-lite-preview-02-05 | completion(model='gemini/gemini-2.0-flash-lite-preview-02-05', messages) | os.environ['GEMINI_API_KEY'] | 
Context Caching​
Use Google AI Studio context caching is supported by
{
    {
        "role": "system",
        "content": ...,
        "cache_control": {"type": "ephemeral"} # 👈 KEY CHANGE
    },
    ...
}
in your message content block.
Architecture Diagram​
Notes:
- Gemini Context Caching only allows 1 block of continuous messages to be cached. 
- If multiple non-continuous blocks contain - cache_control- the first continuous block will be used. (sent to- /cachedContentin the Gemini format)
- The raw request to Gemini's /generateContentendpoint looks like this:
curl -X POST "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-001:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-d '{
      "contents": [
        {
          "parts":[{
            "text": "Please summarize this transcript"
          }],
          "role": "user"
        },
      ],
      "cachedContent": "'$CACHE_NAME'"
    }'
Example Usage​
- SDK
- PROXY
from litellm import completion 
for _ in range(2): 
    resp = completion(
        model="gemini/gemini-1.5-pro",
        messages=[
        # System Message
            {
                "role": "system",
                "content": [
                    {
                        "type": "text",
                        "text": "Here is the full text of a complex legal agreement" * 4000,
                        "cache_control": {"type": "ephemeral"}, # 👈 KEY CHANGE
                    }
                ],
            },
            # marked for caching with the cache_control parameter, so that this checkpoint can read from the previous cache.
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": "What are the key terms and conditions in this agreement?",
                        "cache_control": {"type": "ephemeral"},
                    }
                ],
            }]
    )
    print(resp.usage) # 👈 2nd usage block will be less, since cached tokens used
- Setup config.yaml
model_list:
    - model_name: gemini-1.5-pro
      litellm_params:
        model: gemini/gemini-1.5-pro
        api_key: os.environ/GEMINI_API_KEY
- Start proxy
litellm --config /path/to/config.yaml
- Test it!
See Langchain, OpenAI JS, Llamaindex, etc. examples
- Curl
- OpenAI Python SDK
curl --location 'http://0.0.0.0:4000/chat/completions' \
    --header 'Content-Type: application/json' \
    --data '{
    "model": "gemini-1.5-pro",
    "messages": [
        # System Message
            {
                "role": "system",
                "content": [
                    {
                        "type": "text",
                        "text": "Here is the full text of a complex legal agreement" * 4000,
                        "cache_control": {"type": "ephemeral"}, # 👈 KEY CHANGE
                    }
                ],
            },
            # marked for caching with the cache_control parameter, so that this checkpoint can read from the previous cache.
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": "What are the key terms and conditions in this agreement?",
                        "cache_control": {"type": "ephemeral"},
                    }
                ],
            }],
}'
import openai
client = openai.AsyncOpenAI(
    api_key="anything",            # litellm proxy api key
    base_url="http://0.0.0.0:4000" # litellm proxy base url
)
response = await client.chat.completions.create(
    model="gemini-1.5-pro",
    messages=[
        {
            "role": "system",
            "content": [
                    {
                        "type": "text",
                        "text": "Here is the full text of a complex legal agreement" * 4000,
                        "cache_control": {"type": "ephemeral"}, # 👈 KEY CHANGE
                    }
            ],
        },
        {
            "role": "user",
            "content": "what are the key terms and conditions in this agreement?",
        },
    ]
)
Image Generation​
- SDK
- PROXY
from litellm import completion 
response = completion(
    model="gemini/gemini-2.0-flash-exp-image-generation",
    messages=[{"role": "user", "content": "Generate an image of a cat"}],
    modalities=["image", "text"],
)
assert response.choices[0].message.content is not None # ".."
- Setup config.yaml
model_list:
  - model_name: gemini-2.0-flash-exp-image-generation
    litellm_params:
      model: gemini/gemini-2.0-flash-exp-image-generation
      api_key: os.environ/GEMINI_API_KEY
- Start proxy
litellm --config /path/to/config.yaml
- Test it!
curl -L -X POST 'http://localhost:4000/v1/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
    "model": "gemini-2.0-flash-exp-image-generation",
    "messages": [{"role": "user", "content": "Generate an image of a cat"}],
    "modalities": ["image", "text"]
}'