Team/Key Based Logging
Allow each key/team to use their own Langfuse Project / custom callbacks
This allows you to do the following
Team 1 -> Logs to Langfuse Project 1 
Team 2 -> Logs to Langfuse Project 2
Team 3 -> Disabled Logging (for GDPR compliance)
Team Based Logging​
Setting Team Logging via config.yaml​
Turn on/off logging and caching for a specific team id.
Example:
This config would send langfuse logs to 2 different langfuse projects, based on the team id
litellm_settings:
  default_team_settings: 
    - team_id: "dbe2f686-a686-4896-864a-4c3924458709"
      success_callback: ["langfuse"]
      langfuse_public_key: os.environ/LANGFUSE_PUB_KEY_1 # Project 1
      langfuse_secret: os.environ/LANGFUSE_PRIVATE_KEY_1 # Project 1
    - team_id: "06ed1e01-3fa7-4b9e-95bc-f2e59b74f3a8"
      success_callback: ["langfuse"]
      langfuse_public_key: os.environ/LANGFUSE_PUB_KEY_2 # Project 2
      langfuse_secret: os.environ/LANGFUSE_SECRET_2 # Project 2
Now, when you generate keys for this team-id
curl -X POST 'http://0.0.0.0:4000/key/generate' \
-H 'Authorization: Bearer sk-1234' \
-H 'Content-Type: application/json' \
-d '{"team_id": "06ed1e01-3fa7-4b9e-95bc-f2e59b74f3a8"}'
All requests made with these keys will log data to their team-specific logging. -->
[BETA] Team Logging via API​
✨ This is an Enterprise only feature Get Started with Enterprise here
Set Callbacks Per Team​
1. Set callback for team​
We make a request to POST /team/{team_id}/callback to add a callback for
curl -X POST 'http:/localhost:4000/team/dbe2f686-a686-4896-864a-4c3924458709/callback' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
  "callback_name": "langfuse",
  "callback_type": "success",
  "callback_vars": {
    "langfuse_public_key": "pk", 
    "langfuse_secret_key": "sk_", 
    "langfuse_host": "https://cloud.langfuse.com"
    }
  
}'
Supported Values​
| Field | Supported Values | Notes | 
|---|---|---|
| callback_name | "langfuse","gcs_bucket" | Currently only supports "langfuse","gcs_bucket" | 
| callback_type | "success","failure","success_and_failure" | |
| callback_vars | dict of callback settings | |
|     langfuse_public_key | string | Required for Langfuse | 
|     langfuse_secret_key | string | Required for Langfuse | 
|     langfuse_host | string | Optional for Langfuse (defaults to https://cloud.langfuse.com) | 
|     gcs_bucket_name | string | Required for GCS Bucket. Name of your GCS bucket | 
|     gcs_path_service_account | string | Required for GCS Bucket. Path to your service account json | 
2. Create key for team​
All keys created for team dbe2f686-a686-4896-864a-4c3924458709 will log to langfuse project specified on Step 1. Set callback for team
curl --location 'http://0.0.0.0:4000/key/generate' \
    --header 'Authorization: Bearer sk-1234' \
    --header 'Content-Type: application/json' \
    --data '{
        "team_id": "dbe2f686-a686-4896-864a-4c3924458709"
}'
3. Make /chat/completion request for team​
curl -i http://localhost:4000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer sk-KbUuE0WNptC0jXapyMmLBA" \
  -d '{
    "model": "gpt-4",
    "messages": [
      {"role": "user", "content": "Hello, Claude gm!"}
    ]
}'
Expect this to be logged on the langfuse project specified on Step 1. Set callback for team
Disable Logging for a Team​
To disable logging for a specific team, you can use the following endpoint:
POST /team/{team_id}/disable_logging
This endpoint removes all success and failure callbacks for the specified team, effectively disabling logging.
Step 1. Disable logging for team​
curl -X POST 'http://localhost:4000/team/YOUR_TEAM_ID/disable_logging' \
    -H 'Authorization: Bearer YOUR_API_KEY'
Replace YOUR_TEAM_ID with the actual team ID
Response A successful request will return a response similar to this:
{
    "status": "success",
    "message": "Logging disabled for team YOUR_TEAM_ID",
    "data": {
        "team_id": "YOUR_TEAM_ID",
        "success_callbacks": [],
        "failure_callbacks": []
    }
}
Step 2. Test it - /chat/completions​
Use a key generated for team = team_id - you should see no logs on your configured success callback (eg. Langfuse)
curl -i http://localhost:4000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer sk-KbUuE0WNptC0jXapyMmLBA" \
  -d '{
    "model": "gpt-4",
    "messages": [
      {"role": "user", "content": "Hello, Claude gm!"}
    ]
}'
Debugging / Troubleshooting​
- Check active callbacks for team using GET /team/{team_id}/callback
Use this to check what success/failure callbacks are active for team=team_id
curl -X GET 'http://localhost:4000/team/dbe2f686-a686-4896-864a-4c3924458709/callback' \
        -H 'Authorization: Bearer sk-1234'
Team Logging Endpoints​
- POST /team/{team_id}/callbackAdd a success/failure callback to a team
- GET /team/{team_id}/callback- Get the success/failure callbacks and variables for a team
[BETA] Key Based Logging​
Use the /key/generate or /key/update endpoints to add logging callbacks to a specific key.
✨ This is an Enterprise only feature Get Started with Enterprise here
How key based logging works:​
- If Key has no callbacks configured, it will use the default callbacks specified in the config.yaml file
- If Key has callbacks configured, it will use the callbacks specified in the key
- Langfuse
- GCS Bucket
- Langsmith
curl -X POST 'http://0.0.0.0:4000/key/generate' \
-H 'Authorization: Bearer sk-1234' \
-H 'Content-Type: application/json' \
-d '{
    "metadata": {
        "logging": [{
            "callback_name": "langfuse", # "otel", "gcs_bucket"
            "callback_type": "success", # "success", "failure", "success_and_failure"
            "callback_vars": {
                "langfuse_public_key": "os.environ/LANGFUSE_PUBLIC_KEY", # [RECOMMENDED] reference key in proxy environment
                "langfuse_secret_key": "os.environ/LANGFUSE_SECRET_KEY", # [RECOMMENDED] reference key in proxy environment
                "langfuse_host": "https://cloud.langfuse.com"
            }
        }]
    }
}'
- Create Virtual Key to log to a specific GCS Bucket - Set - GCS_SERVICE_ACCOUNTin your environment to the path of the service account json- export GCS_SERVICE_ACCOUNT=/path/to/service-account.json # GCS_SERVICE_ACCOUNT=/Users/ishaanjaffer/Downloads/adroit-crow-413218-a956eef1a2a8.json- curl -X POST 'http://0.0.0.0:4000/key/generate' \
 -H 'Authorization: Bearer sk-1234' \
 -H 'Content-Type: application/json' \
 -d '{
 "metadata": {
 "logging": [{
 "callback_name": "gcs_bucket", # "otel", "gcs_bucket"
 "callback_type": "success", # "success", "failure", "success_and_failure"
 "callback_vars": {
 "gcs_bucket_name": "my-gcs-bucket", # Name of your GCS Bucket to log to
 "gcs_path_service_account": "os.environ/GCS_SERVICE_ACCOUNT" # environ variable for this service account
 }
 }]
 }
 }'
- Test it - - /chat/completionsrequest- Use the virtual key from step 3 to make a - /chat/completionsrequest- You should see your logs on GCS Bucket on a successful request - curl -i http://localhost:4000/v1/chat/completions \
 -H "Content-Type: application/json" \
 -H "Authorization: Bearer sk-Fxq5XSyWKeXDKfPdqXZhPg" \
 -d '{
 "model": "fake-openai-endpoint",
 "messages": [
 {"role": "user", "content": "Hello, Claude"}
 ],
 "user": "hello",
 }'
- Create Virtual Key to log to a specific Langsmith Project - curl -X POST 'http://0.0.0.0:4000/key/generate' \
 -H 'Authorization: Bearer sk-1234' \
 -H 'Content-Type: application/json' \
 -d '{
 "metadata": {
 "logging": [{
 "callback_name": "langsmith", # "otel", "gcs_bucket"
 "callback_type": "success", # "success", "failure", "success_and_failure"
 "callback_vars": {
 "langsmith_api_key": "os.environ/LANGSMITH_API_KEY", # API Key for Langsmith logging
 "langsmith_project": "pr-brief-resemblance-72", # project name on langsmith
 "langsmith_base_url": "https://api.smith.langchain.com"
 }
 }]
 }
 }'
- Test it - - /chat/completionsrequest- Use the virtual key from step 3 to make a - /chat/completionsrequest- You should see your logs on your Langsmith project on a successful request - curl -i http://localhost:4000/v1/chat/completions \
 -H "Content-Type: application/json" \
 -H "Authorization: Bearer sk-Fxq5XSyWKeXDKfPdqXZhPg" \
 -d '{
 "model": "fake-openai-endpoint",
 "messages": [
 {"role": "user", "content": "Hello, Claude"}
 ],
 "user": "hello",
 }'
Help us improve this feature, by filing a ticket here
Check if key callbacks are configured correctly /key/health​
Call /key/health with the key to check if the callback settings are configured correctly
Pass the key in the request header
curl -X POST "http://localhost:4000/key/health" \
  -H "Authorization: Bearer <your-key>" \
  -H "Content-Type: application/json"
- Response when key is configured correctly
- Response when key is configured incorrectly
Response when logging callbacks are setup correctly:
A key is healthy when the logging callbacks are setup correctly.
{
  "key": "healthy",
  "logging_callbacks": {
    "callbacks": [
      "gcs_bucket"
    ],
    "status": "healthy",
    "details": "No logger exceptions triggered, system is healthy. Manually check if logs were sent to ['gcs_bucket']"
  }
}
Response when logging callbacks are not setup correctly
A key is unhealthy when the logging callbacks are not setup correctly.
{
  "key": "unhealthy",
  "logging_callbacks": {
    "callbacks": [
      "gcs_bucket"
    ],
    "status": "unhealthy",
    "details": "Logger exceptions triggered, system is unhealthy: Failed to load vertex credentials. Check to see if credentials containing partial/invalid information."
  }
}
Disable/Enable Message redaction​
Use this to enable prompt logging for specific keys when you have globally disabled it
Example config.yaml with globally disabled prompt logging (message redaction)
model_list:
 - model_name: gpt-4o
    litellm_params:
      model: gpt-4o
litellm_settings:
  callbacks: ["datadog"]
  turn_off_message_logging: True # 👈 Globally logging prompt / response is disabled
Enable prompt logging for key
Set turn_off_message_logging to false for the key you want to enable prompt logging for. This will override the global turn_off_message_logging setting.
curl -X POST 'http://0.0.0.0:4000/key/generate' \
-H 'Authorization: Bearer sk-1234' \
-H 'Content-Type: application/json' \
-d '{
    "metadata": {
        "logging": [{
            "callback_name": "datadog",
            "callback_vars": {
                "turn_off_message_logging": false # 👈 Enable prompt logging
            }
        }]
    }
}'
Response from /key/generate
{
    "key_alias": null,
    "key": "sk-9v6I-jf9-eYtg_PwM8OKgQ",
    "metadata": {
        "logging": [
            {
                "callback_name": "datadog",
                "callback_vars": {
                    "turn_off_message_logging": false
                }
            }
        ]
    },
    "token_id": "a53a33db8c3cf832ceb28565dbb034f19f0acd69ee7f03b7bf6752f9f804081e"
}
Use key for /chat/completions request
This key will log the prompt to the callback specified in the request
curl -i http://localhost:4000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer sk-9v6I-jf9-eYtg_PwM8OKgQ" \
  -d '{
    "model": "gpt-4o",
    "messages": [
      {"role": "user", "content": "hi my name is ishaan what key alias is this"}
    ]
  }'